# Simulation Based Acquisition in Logistics and Supportability Processes





# Overview

- Vision and Goals of SBA
- Applications
- Logistics and Support Applications
- Future





## **Vision and Goals**

#### Vision

"An acquisition process in which DoD and industry are enabled by robust, collaborative use of simulation technology that is integrated across acquisition phases and programs"





#### **Vision and Goals**

#### Goals

- Substantially reduce the time, resources, and risk associated with the entire acquisition process
- Increase the quality, military worth, and supportability of fielded systems while reducing total ownership costs throughout the life cycle
- Enable integrated product and process development across the entire acquisition life cycle

DoD Executive Council for Modeling and Simulation Dec, 1997





## **Vision and Goals**

#### Key Issues

- Dramatic improvement in acquisition
- Optimize cost and performance
- Reduce risk
- Reduce acquisition cycle time and complexity
- Lower ownership costs
- Collaborative environments software re-use





## **Applications**

#### **Outside Logistics Sphere**

- Direct application in aircraft simulators and modeling
  - High fidelity simulators using same flight control and weapons performance parameters
  - Capability for collaborative environments
  - •Software development time significantly reduced since control laws and software used in simulator forms basis for OFP







- Issue not as simple for Logistics
  - Technical approach to acquisition has been primarily in modeling
  - Most logistics processes don't lend to simulators (cockpit)
  - Support processes tend to be diverse
    - Supply Chain Management
    - Technicians (Maintenance)
    - Systems (Tech data, MIS, etc)







- However, application of SBA techniques are viable for some logistics operations
  - •Task level operations lend themselves to use of three dimensional modeling and virtual reality
  - Digital design data from CAD/CATIA can be used to characterise shape and dimensions of equipment and components





- Breakthroughs in technology have aided in application
  - •Addition of either technician in virtual reality or varible size mannequins (male and female, 5% to 95%) allows human interaction with modeling environment







- 3D solid modeling also allows investigation of repair procedures
  - •Refine tech data task sequencing and component interference issues
  - Resolve issues in early design phase







- Process is successful at the task level, but applying the approach in an entire logistics process is still in the infant stages
  - Apply distributed simulations against a model to define new processes and techniques for weapons employment
  - •Models and tools at the process level lack fidelity and sophistication at the process level







#### **Future**

• Continue the application of SBA techniques but at the process level....and potentially campaign or theater level

•Allow logisticians to interact and define new support processes and techniques in battlefield

scenarios









## Summary

- Application of SBA at the logistics task level is a success and growing
- Continue to grow process to higher levels
  - •New constructive logistics models using interactive and visual technology to allow logistics process change







